ARV SUPER 2 MODERN LIGHT AIRCRAFT
ARTIFICIAL HORIZON FLIGHT INSTRUMENT
CURTISS MODEL-D PUSHER, 1911
Contents

BALLOONS AND AIRSHIPS 6
PIONEERS OF FLIGHT 8
EARLY MONOPLANES 10
BIPLANES AND TRIPLANES 12
WORLD WAR I AIRCRAFT 14
EARLY COCKPITS AND INSTRUMENTS 16
SEAPLANES AND FLYING BOATS 18
EARLY PASSENGER AIRCRAFT 20
WORLD WAR II AIRCRAFT 22
EARLY PISTON AERO-ENGINES 24
MODERN PISTON AERO-ENGINES 26
WINGS 28
FUSELAGE 30
LANDING GEAR 52
MODERN JETLINERS 54
MODERN COCKPITS 58
SUPersonic Jetliners 40
JET ENGINES 42
MODERN MILITARY AIRCRAFT 44
HELICOPTERS 46
HELICOPTER TECHNOLOGY 48
LIGHT AIRCRAFT 50
GLIDERS, HANG-GLIDERS, AND MICROLIGHTS 52
NAVIGATION 54
SAFETY AND SURVIVAL 56
VTOL AIRCRAFT 58
INDEX 60
ACKNOWLEDGMENTS 64
Balloons and airships

The first sustained flight was made by the French Montgolfier brothers’ hot-air balloon in 1783. Their balloon was made of paper, and the hot air (which provided the lift) was produced by burning straw. Later balloons were filled with various lighter-than-air gases (hydrogen, helium, or coal gas) until about 1970, when hot-air balloons again became fashionable. In modern hot-air balloons, the air is heated by propane burners carried in the balloon’s basket. Modern airships may be filled with helium or hot air (hydrogen, used in early airships, is dangerously inflammable). Unlike balloons, airships have some means of propulsion and can be steered. Many modern airships also have swivelling propellers to assist with take-off and landing. The first airship was made in Paris, France, in 1852, but the best-known airship-maker was the German Count Ferdinand von Zeppelin, who built his first craft in 1900. Airships made the first intercontinental passenger flights, and were a popular form of transport until the 1930s, when the disastrous crashes of the British R101 and the German Hindenburg led to a virtual halt in airship production. Small airships were used as convoy escorts in both world wars, and today they are used for surveillance and for aerial advertising.
FLIGHT HAS FASCINATED MANKIND for centuries, and countless unsuccessful flying machines have been designed. The first successful flight was made by the French Montgolfier brothers in 1783, when they flew a balloon over Paris (see pp. 6-7). The next major advance was the development of gliders, notably by the Englishman Sir George Cayley, who in 1845 designed the first glider to make a sustained flight, and by the German Otto Lilienthal, who became known as the world’s first pilot because he managed to achieve controlled flights. However, powered flight did not become a practical possibility until the invention of lightweight, petrol-driven internal combustion engines at the end of the 19th century. Then, in 1903, the American brothers Orville and Wilbur Wright made the first powered flight in their Wright Flyer biplane, which used a four-cylinder, petrol-driven engine. Aircraft design advanced rapidly, and in 1909 the Frenchman Louis Blériot made his pioneering flight across the English Channel (see pp. 10-11). The American Glenn Curtiss also achieved several “firsts” in his Model-D Pusher and its variants, most notably winning the world’s first competition for airspeed at Reims in 1909.
Early monoplanes

Monoplanes have one wing on each side of the fuselage. The principal disadvantage of this arrangement in early, wooden-framed aircraft was that single wings were weak and required strong wires to brace them to king-posts above and below the fuselage. However, single wings also had advantages: they experienced less drag than multiple wings, allowing greater speed; they also made aircraft more manoeuvrable because single wings were easier to warp (twist) than double wings, and warping the wings was how pilots controlled the roll of early aircraft. By 1912, the French pilot Louis Blériot had used a monoplane to make the first flight across the English Channel, and the Briton Robert Blackburn and the Frenchman Armand Deperdussin had proved the greater speed of monoplanes. However, a spate of crashes caused by broken wings discouraged monoplane production, except in Germany, where all-metal monoplanes were developed in 1917. The wings of all-metal monoplanes did not need strengthening by struts or bracing wires, but despite this, such planes were not widely adopted until the 1930s.
Biplanes and triplanes

Biplanes dominated aircraft design until the 1950s, largely because some early monoplanes (see pp. 10-11) were too fragile to withstand the stresses of flight. The struts between biplanes’ wings made the wings strong compared with those of early monoplanes, although the greater surface area of biplanes’ wings increased drag and reduced speed. Many aircraft designers also developed triplanes, which had a particular advantage over biplanes: more wings meant a shorter wingspan to achieve the same lifting power, and a shorter wingspan gave greater manoeuvrability. Triplanes were most successful as fighters during World War I, the German Fokker triplane being a notable example. However, the greater manoeuvrability of triplanes was no advantage for normal flying and so most manufacturers continued to make biplanes. Many other aircraft designs were attempted. Some were quadruplanes, with four pairs of wings. Some had tandem wings (two pairs of monoplane wings, one behind the other). One of the most bizarre designs was by the Englishman Horatio Phillips: it had 20 sets of narrow wings and looked rather like a Venetian blind.

Side View of Avro Triplane IV, 1910

Crankcase breather pipe
Directly driven propeller
Main front strut to engine mount
Skid upper bracing strut
Ash skid
Lateral bracing strut
Rubber cord suspension
Rubber tyre
Wire wheel
Axle
Turnbuckle
Skid rear strut
Wing strut
Fuel tank
Throttle
Harness
Pilot’s seat
Limit of fuselage skin
Valve rocker
Air cooling baffle
Magnet
Rudder
Navigation light
Elevator
Rudder hinge
RAF Central Flying School badge
Fin
Tailwheel
Tailplane
Rudder cable
Bracing strut
World War I aircraft

When World War I started in 1914, the main purpose of military aircraft was reconnaissance. The British-built BE 2, of which the BE 2B was a variant, was well-suited to this duty; it was very stable in flight, allowing the occupants to study the terrain, take photographs, and make notes. The BE 2 was also one of the first aircraft to drop bombs.

One of the biggest problems for aircraft designers during the war was mounting machine-guns. On aircraft that had front-mounted propellers, the field of fire was restricted by the propeller and other parts of the aircraft. The problem was solved in 1915 by the Dutchman Anthony Fokker, who designed an interrupter gear that prevented a machine-gun from firing when a propeller blade passed in front of the barrel. The German LVG CVI had a forward-firing gun to the right of the engine, as well as a rear-cockpit gun, and a bombing capability. It was one of the most versatile aircraft of the war.
Early cockpits and instruments

One of the first flight instruments, the statoscope, was used in early balloon flights to indicate ascent and descent. The development of powered flight led to the introduction of cockpits and more instruments. Early cockpits had rudder pedals; a control column (for manoeuvring); and flight, engine, and systems instruments. Flight instruments commonly included an airspeed indicator, altimeter (showing altitude), clinometer (showing tilt and pitch), and magnetic compass (for navigation). Engine instruments typically included an oil-pressure gauge, fuel-level gauge, tachometer (indicating engine speed), and a dual electric power indicator (showing electricity production and consumption). One of the earliest systems instruments was the flap indicator, which showed the position of the flaps on the wings.

"WING SPRING" AIRSPEED INDICATOR, 1910

COCKPIT PANEL OF AN AVRO 504N LYNX, 1950
COCKPIT OF A BRISTOL FIGHTER, 1917

- Windscreen
- Modern directional gyro
- Airspeed indicator
- Altimeter
- Clinometer
- Fuel tank selector cock
- Rudder pedal
- Engine-throttle and fuel-mixture levers
- Tachometer (engine-speed gauge)
- Structural braiding tube across cockpit
- Oil-pressure gauge
- Padded coaming
- Hand-pumped air-pressure gauge
- Selector cocks for air pressure in fuel tanks
- Manual air pump
- Magneto starter switch
- Starting magneto lever
- Control column
- Cable to starboard aileron
- Pilot's seat
Seaplanes and flying boats

Seaplanes and flying boats take off from and land on water. On seaplanes only the floats touch the water, but on flying boats the fuselage itself is partly submerged. Modern seaplanes have two large floats; some early seaplanes had an additional tail float, or a large central float balanced by small wingtip floats. Flying boats have a specially shaped fuselage, similar to the hull of a ship, that runs easily across water. Like centre-float seaplanes, they need stabilizing wingtip floats. A few early flying boats had twin hulls, and others, instead of floats, had deep, stubby wings that rested on the water. Due to the lack of runways, flying boats were widely used as passenger aircraft until the end of World War II. Both types of marine aircraft were also used for various military tasks, including dropping torpedoes, bombing, reconnaissance, and transport. Today, they are used mainly for racing, and for special purposes such as dumping water on large fires.

Vickers Viking Flying Boat Fuselage, 1921

Short S25 Empire Flying Boat, 1936
Early passenger aircraft

Until the 1950s, most passenger aircraft were biplanes, with two pairs of wings and a wooden or metal framework covered with fabric or, sometimes, plywood. Such aircraft were restricted to low speeds and low altitudes because of the drag on their wings. Many had an open cockpit, situated behind or in front of an enclosed but unpressurized cabin that carried a maximum of ten people. The passengers usually sat in wicker chairs that were not bolted to the floor, and the journey could be bumpy when flying through turbulence. Warm clothing, and ear plugs to reduce the effects of prolonged noise, were often required. During the 1950s, all-metal monoplanes, such as the Lockheed Electra shown here, became widespread. Their streamlined design, more powerful engines, and pressurized cabins (which were first used commercially in 1939) allowed fast flights at high altitudes, where there is less turbulence. Flying boats (see pp. 18-19) were still necessary on many routes until 1945 because of inadequate runways and the frequency of emergency sea-landings. World War II, however, resulted in enough good runways being built for land-planes to become standard on all major airline routes.
World War II aircraft

When World War II began in 1939, air forces had already replaced most of their fabric-skinned biplanes with all-metal, stressed-skin monoplanes. Aircraft played a far greater role in military operations during World War II than ever before. The wide range of aircraft duties, and the introduction of radar tracking and guidance systems, put pressure on designers to improve aircraft performance. The main areas of improvement were speed, range, and engine power. Bombers became larger and more powerful – converting from two to four engines – in order to carry a heavier bomb load; the US B-17 Flying Fortress could carry up to 6.2 tonnes (6.1 tons) of bombs over a distance of about 5,200 km (3,200 miles).

Some aircraft increased their range by using drop tanks (fuel tanks that were jettisoned when empty to reduce drag). Fighters needed speed and manoeuvrability: the Hawker Tempest shown here had a maximum speed of 700 kph (435 mph), and was one of the few Allied aircraft capable of catching the German jet-powered V1 "flying bomb". By 1944, Britain had introduced its first turbojet-powered aircraft, the Gloster Meteor fighter, and Germany had introduced the fastest fighter in the world, the turbojet-powered Me 262, which had a maximum speed of 868 kph (540 mph).

Sectioned B-17G Flying Fortress Bomber, c.1945
Early piston aero-engines

Petrol-driven piston engines were used in the first powered flights. The engine used in the 1903 Wright Flyer (see pp. 8-9) for the first recorded powered flight had four water-cooled cylinders that lay horizontally side by side. The Wright brothers had built their own engine and, although it worked, it was very crude; for instance, it had an ignition system that created a spark by pulling apart two pieces of metal in each cylinder. In 1907, the French Seguin brothers built the first rotary engine, the Gnome. Its five cylinders were arranged around a stationary crankshaft like the spokes of a wheel, and spun around the crankshaft to turn the propeller. However, the spinning motion of rotary engines could cause aircraft to pull to one side, and so by 1918 these engines were being superseded by two other types. One type had water-cooled cylinders arranged in a single line (in-line) or in a V-shape (like the V12 Kestrel shown here). The other was the air-cooled radial engine, which was similar to the rotary engine but had a spinning crankshaft to turn the propeller while the cylinders remained stationary.
Modern piston aero-engines

Piston engines today are used mainly to power the vast numbers of light aircraft and microlights, as well as crop-sprayers and crop-dusters, small helicopters, and fire-bombers (which dump water on large fires). Virtually all heavier aircraft are now powered by jet engines.

Modern piston aero-engines work on the same basic principles as the engine used by the Wright brothers in their first powered flight in 1903. However, today's engines are more sophisticated than earlier engines. For example, modern aero-engines may use a two-stroke or a four-stroke combustion cycle; they may have from one to nine air- or water-cooled cylinders, which may be arranged horizontally, in-line, in V formation, or radially; and they may drive the aircraft's propeller either directly or through a reduction gearbox. One of the more unconventional types of modern aero-engine is the rotary engine shown here, which has a trilobate (three-sided) rotor spinning in a chamber shaped like a fat figure-of-eight.
Wings

All aircraft, except balloons and airships, rely on wings to fly; even the blades of helicopters are basically rotating wings. The airflow over wings' surfaces generates the lifting force necessary for flight. Wings are also crucial in manoeuvring. Early wings, made from wood and fabric, were warped (twisted) by wires for banking and turning. Later wings used ailerons (hinged flaps on the trailing, or rear, edge) for banking and turning. Subsequent developments were flaps and slats. Flaps, on a wing's trailing edge, are moved down to increase lift during take-off, climbing, and descent, and to increase lift and drag during the landing approach. Slats, on the leading, or forward, edge, move forwards to help prevent the aircraft from stalling.

The Handley Page Gugnunc shown here was one of the first aircraft to combine all three features. Modern wings are metal-framed, with a skin made of metal or of a composite material such as carbon-fibre. Wings on large aircraft may carry fuel tanks, engines, and retractable landing gear.

WING SKELETON OF A BRISTOL FIGHTER, 1917

WING RIB OF A BRISTOL FIGHTER, 1917

WING ROOT OF A BAE-146 MODERN JETLINER
Fuselage

The fuselage is the main body of an aircraft. The earliest aeroplanes did not have a fuselage (see pp. 8-9) but wooden-framed, fabric-skinned fuselages were soon adopted; in some of these early aircraft the skin covered only the nose and cockpit. During the 1920s and 1930s, most aircraft had steel fuselage frames covered with a metal skin or with metal and wooden panels. High-speed aircraft required an all-metal fuselage frame with a flush-riveted skin to produce a streamlined surface. The Vickers Wellington shown here has an unusual fuselage frame consisting of small curved rods riveted together to form a geodetic mesh. Pressurized jetliner fuselages, introduced in the 1940s, must maintain normal air pressure inside the aircraft so that the passengers can breathe while the aircraft is flying at high altitudes where the external air pressure is extremely low. Such fuselages must withstand the stresses of expansion and contraction under varying external air pressures, while remaining completely airtight.

Fuselage of a Hawker Hart Trainer, 1935

- Engine cradle
- Engine water-cooling radiator
- Shock absorber fairing
- Axle
- Inflation-valve access
- Palmer cord aero-tyre
- Fuel tank
- Fuel filler cap
- Fuel level indicator
- Windscreen
- Pupil’s open cockpit
- Plywood top decking
- Padded coaming
- Hinged joint
- Step
- Tailplane trimming wheel
- Step with plywood reinforcement
- Electrical wiring loom
- Metal frame
- Bracket for overhead luggage lockers
- Gallery for electrical and air-conditioning systems
- Reflective insulating foil
- Seat rail
- Transverse floor beam
- Floor strut
- Cargo and baggage hold
- Aluminium-alloy skin
- Bonded stringer
- Hydraulic control pipe
- Electrical control wires
GEODETiC FORWARD FUSELAGE
OF A VICKERS WELLINGTON
1A BOMBER, 1939

WOODEN-FRAMED REAR
FUSELAGE OF AN AVRO
TRIPLANE, 1910
Landing gear

Landing gear allows aircraft to move on the ground, and absorbs shocks to enable smooth landing and take-off. The earliest aircraft used wire wheels, wooden struts to brace them to the fuselage, and, usually, a simple skid beneath the tail. Rubber bungees (elasticated cords) absorbed shocks when landing, and long, curved skids at the front prevented the aircraft from overturning. As aircraft became heavier and faster, pressed-steel wheels, metal legs, sprung shock absorbers, and fluid dampers came into use. During the 1950s, retractable landing gear was introduced to reduce drag during flight. With the coming of large, heavy jetliners, multi-wheel landing gear was adopted. This landing gear had a bogie (pivoting trolley) with up to eight wheels at the bottom of each leg. At the same time, nose landing gear, not used since 1914, became widely adopted, enabling pilots to make safer and smoother landings.
MAIN LANDING GEAR
OF A BE 2B, 1914

Plywood top decking

Steel anchor for lower-wing spar and landing gear struts

V-strut

Bracing wire

Turnbuckle

Bracing wire lug

Rubber bungee (elasticated cord) shock absorber

Tubular steel axle

Fabric-covered wire wheel

MODERN DISC BRAKE

Hydraulic pipe connection

Hydraulic brake cylinder

Tyre inflation valve

Brake disc

Stationary brake unit

MODERN MAIN WHEELS

Axle bearing

Forged light-alloy wheel

Bolt

Drive teeth for brake disc

MODERN NOSE-GEAR

Latch lock spring

Forced Y-shaped main leg

Door arm

Nose-gear aft door

Hydraulic steering cylinder

Hydraulic brake pipe

Steering arm

Torque link

Inflation valve

Light-alloy wheel

Oleo shock-strut

Smooth tread multi-ply tyre

Forged light-alloy wheel

Ribbed-tread left nose-tyre
Modern jetliners have enabled ordinary people to travel to places where once only the wealthy could afford to go. Compared with the first jetliners (which were introduced in the 1940s), modern ones are much quieter, burn fuel more efficiently, and produce less air pollution. These advances are largely due to the replacement of turbojet engines with turbofan engines (see pp. 42-43). The greater power of turbofan engines at low speeds enables modern jetliners to carry more fuel and passengers than turbojet aircraft; a modern Boeing 747-400 (popularly known as a “jumbo jet”) can fly 400 people for 13,700 km (8,500 miles) without needing to refuel. Jetliners fly at high altitudes, typically cruising at 8,000-11,000 m (26,000-36,000 ft), where they can use fuel efficiently and usually avoid bad weather. The pilot always controls the aircraft during take-off and landing, but at other times the aircraft is usually controlled by an autopilot. Autopilots are complex on-board mechanisms that detect deviations from an aircraft’s route and make appropriate adjustments to the flight controls. Flight decks are also equipped with radars that warn pilots of approaching hazards, such as mountain ranges, bad weather, and other aircraft.
Modern jetliners 2

Landing and taxiing light
Heated de-icing leading edge
Roll-spoiler hinge
Roll-spoiler hydraulic actuator attachment
Fixed trailing edge
Aileron hinge
Starboard navigation light

STARBOARD WING
Hinge bracket
Aerodynamic balance
Horn balance

INTERMEDIATE LIFT SPOILER
MAIN FOWLER FLAP
OUTBOARD BOLL SPOILER

Leader edge
Flap tip
Flap seal

Outboard tab
Tab-hinge line

FUSELAGE SPINE FAIRING
Skin lap-joint
Passenger window aperture
Main external operating handle

Landing gear door
Hinge
Pneumatic tyre
Wheel hub

Hydraulic brake pipe
Electrical harness
Light-alloy beam
Shock-strut bearing
Outer wheel axle
Pivoted/trailing-link arm
Hydraulic brake pipe

Main pivot
Oleo lock-jack
Direction bar
Brake pipe
Side brace and retraction jack trunnions
Lower pivot

Anchor for open door
Cabin air-discharge aperture

AFT MAIN DOOR
Modern cockpits

The cockpits of modern aircraft contain many data-display instruments, as well as aircraft controls. All modern aeroplanes have engine instruments (which indicate data such as fuel levels and power), and flight instruments. There are four main flight instruments: the altimeter, artificial horizon, airspeed indicator, and directional gyro. Many aircraft have two additional flight instruments: a turn-and-slip indicator and a vertical speed indicator. Some aircraft also have systems instruments, which indicate data such as the position of flaps and ailerons, and cabin pressure. In the most up-to-date cockpits, data is presented on electronic display screens. The most important screens are the primary flight display (which simultaneously shows data from all the flight instruments), and the navigational display (which combines the functions of compass, radar screen, and map).

FLIGHT DECK SIMULATOR OF AN AIRBUS A320 JETLINER

Primary flight display brightness control

Loudspeaker control

Air vent

Loudspeaker

Footrest

Standby airspeed indicator

Standby altimeter

Standby artificial horizon

Rudder pedal adjuster

Digital distance and radio magnetic indicator (DDRMI)

Rudder pedal adjustment indicator

Systems data display

Display management panel

Emergency electric controls

Ground-proximity warning-system controls

Crew voice recorder controls

Oxygen controls

Crew communications controls

Rain repellent control

Windscreen wiper

Navigation display mode selector

Mach (airspeed) selector

External light controls

Navigation display in plan mode

Barometric control

Screen transfer switch
Supersonic jetliners

Supersonic aircraft fly faster than the speed of sound (Mach 1). There are many supersonic military aircraft, but only two supersonic passenger-carrying aircraft (also called SSTs, or supersonic transports) have been produced: the Russian Tu-144, and Concorde, produced jointly by Britain and France. The Tu-144 had a greater maximum speed than Concorde but was withdrawn in 1978, after only seven months in service. Concorde has remained in service since 1976. It features many innovations, including a droop nose, which is lowered during take-off and landing to aid visibility from the cockpit, and the pumping of fuel between forward and aft trim tanks to help stabilize the aircraft. Concorde has a narrow fuselage and short-span wings to reduce drag during supersonic flight. Its noisy turbojet engines with afterburners enable it to carry 100 passengers at a cruising speed of Mach 2 at 15,000-18,000 m (50,000-60,000 ft). Once an aircraft is flying faster than Mach 1, it produces a continuous air-pressure wave, which is heard as a "sonic boom".
Jet engines are used by most military and heavy aircraft, and by many helicopters. The simplest type of jet engine, or gas turbine, is the turbojet. It works by continuously burning a mixture of fuel and air in a combustion chamber to produce a jet of hot exhaust gas that is expelled through a nozzle to produce thrust. The hot gas also spins turbine blades, which, in turn, spin the blades of an air compressor; the compressor forces air into the combustion chamber. Many of the fastest aircraft use turbojets, with additional booster units called afterburners, but their use is restricted by their high noise emission. Most jetliners use turbofan jet engines, which are quieter. An enormous fan, driven by a low-pressure turbine, feeds some air into the compressor but feeds most of it through bypass ducts to join the exhaust jetstream in the tail cone. The bypass stream produces most of the thrust. Many smaller, propeller-driven aircraft use turboprop jet engines, in which the engine powers a propeller.
Modern military aircraft are among the most sophisticated and expensive products of the 20th century. Fighters need computer-operated controls for manoeuvrability, powerful engines, and effective air-to-air weapons. Most modern fighters also have guided missiles, radar, and passive, infra-red sensors. These developments enable today’s fighters to engage in combat with adversaries that are outside visual range. Bombers carry a large weapon load and enough fuel for long-range flights. A few military aircraft, such as the Tornado and the F-14 Tomcat, have variable-sweep (“swing”) wings. During take-off and landing their wings are fully extended, but for high-speed flight and low-level attacks the wings are pivoted fully back. A recent development is the “stealth” bomber, which is designed to absorb or deflect enemy radar in order to remain undetected. Earlier bombers, such as the Tornado, use terrain-following radars to fly so close to the ground that they avoid enemy radar detection.
Helicopters

Helicopters use rotating blades for lift, propulsion, and steering. The first machine to achieve sustained, controlled flight using rotating blades was the autogiro built in the 1920s by the Spaniard Juan de la Cierva. His machine had unpowered blades above the fuselage that relied on the flow of air to rotate them and provide lift as the autogiro was driven forwards by a conventional propeller. Then, in 1939, the Russian-born American Igor Sikorsky produced his VS-300, the forerunner of modern helicopters. Its engine-driven blades provided lift, propulsion, and steering. It could take off vertically, hover, and fly in any direction, and had a tail rotor to prevent the helicopter body from spinning (see pp. 48-49). The introduction of gas turbine jet engines to helicopters in 1955 produced quieter, safer, and more powerful machines. Because of their versatility in flight, helicopters are today used for many purposes, including crop-spraying, traffic surveillance, and transporting crews to deep-sea oil rigs, as well as acting as gunships, air ambulances, and air taxis.
Helicopters can fly in any direction or simply hover. This versatility is made possible by a complex system of controls that allows the pilot to alter the angle of the blades on the main rotor and the tail rotor. The tail rotor maintains a sideways thrust to counteract the tendency of the helicopter to spin in the opposite direction to the main rotor; the pitch (angle) of the tail rotor blades is altered by rudder pedals to swing the tail left or right.

To fly up or down, the pitch of the main rotor blades is adjusted using the collective-pitch lever.

To fly forwards, the entire main rotor is tilted forwards using the cyclic-pitch lever; the same lever tilts the rotor to fly backwards or to the side. Both levers perform their operations via the swash plates, which are connected to the main rotor blades by push-and-pull rods. To hover, the pilot must maintain a precise balance between both levers and the rudder pedals. The complex movements of the rotor blades are made possible by the main rotor hub.

On two-bladed rotors, the blades are bolted directly onto the hub, but on rotors with more than two blades, the blades are attached to hinges on the hub to allow the blades to flap slightly when rotating.

MECHANICAL COMPONENTS OF A BELL 47 G-SERIES

TAIL ROTOR CONTROLS

DUAL COLLECTIVE AND LATERAL CYCLIC CONTROLS, AND THROTTLE LINKAGE
Light aircraft

Light aircraft, such as the ARV Super 2 shown here, are small, lightweight, and of simple construction. More than a million have been built since World War I, mainly for recreational use by private owners. Virtually all light aircraft have piston engines, most of which are air-cooled, although some are liquid-cooled. Open cockpits, almost universal in the 1920s, have today been replaced by enclosed cabins. The cabins of high-wing aircraft have one or two doors, whereas those of low-wing aircraft usually have a sliding or hinged canopy. Most modern light aircraft are made of aluminium alloy, although some are made of wood or of fibre-reinforced materials. Light aircraft today also usually have navigational instruments, an electrical system, cabin heating, wheel brakes, and a two-way radio.
Gliders, hang-gidlers, and microlights

Modern gliders are among the most graceful and aerodynamically efficient of all aircraft. Unpowered but with a large wingspan (up to about 25 m, or 82 ft), gliders use currents of hot, rising air (thermals) to stay aloft, and a rudder, elevators, and ailerons for control. Modern gliders have achieved flights of more than 1,450 km (900 miles) and altitudes above 15,000 m (49,000 ft). Hang-gidlers consist of a simple frame across which rigid or flexible material is stretched to form the wings. The pilot is suspended below the wings in a harness or body-bag and, gripping a triangular A-frame, steers by shifting weight from side to side. Like gliders, hang-gidlers rely on thermals for lift. Microlights are basically powered hang-gidlers. A small engine and an open fibreglass car (trike), which can hold a crew of two, are suspended beneath a stronger version of a hang-glider frame; the frame may have rigid or flexible wings. Microlight pilots, like hang-glider pilots, steer by shifting their weight against an A-frame. Microlights can reach speeds of up to 160 kph (100 mph).
Navigation

AERIAL NAVIGATION is the calculation of an aircraft’s route from its point of departure to a given destination. It involves plotting the aircraft’s course (heading) and airspeed, and the speed and direction of the wind (which will blow the aircraft off course). The resultant plotted line shows the track, or route, of the journey. Early pilots navigated using charts, and visual aids such as landmarks; sometimes, they also used sextants to navigate by the stars. By 1920, cockpit radios could obtain a fix on an aircraft’s position from ground-stations or beacons. The introduction of radar in the 1940s made it possible to pinpoint the position of aircraft from the ground. Today, most small aircraft are still navigated using charts, radio, and simple hand-held instruments. Military aircraft and civil airliners are navigated using sophisticated on-board electronic systems, and signals from satellites that can be used to pinpoint an aircraft’s position to within a few metres. The most advanced cockpits now display all navigational information on electronic screens.
Safety and survival

Since World War I, most aircraft have carried various types of safety and survival equipment. Among the earliest survival items were fire extinguishers, parachutes, life-jackets, and axes (for breaking out of enclosed cabins). Today, airliners also carry oxygen masks that drop automatically from the cabin roof in emergencies; rapidly inflating dinghies for use in emergency sea-landings; and inflatable escape slides to enable safe, fast descent from a grounded aircraft. Pilots of military aircraft wear pressurized suits equipped with an oxygen supply for high-altitude flight; the suits may also carry tools, rations, and weapons to aid survival in hostile environments. Combat aircraft have ejector seats that can shoot out of an aircraft at any height, even during supersonic flight. The seat’s computer controls its flight and the deployment of the occupant’s parachute. In addition to personal survival equipment, modern jetliners have various built-in safety features. Most mechanical parts are protected by smoke- and flame-detectors that trigger extinguishers if fire breaks out; as fuel is used, it is displaced in the tanks by non-inflammable inert gas; and every flight control system has a back-up system in case of mechanical or electrical failure. In addition, the most modern jetliners and military aircraft use computers to override commands from the pilot that could endanger the aircraft.

US Air Force Survival Jacket

- Signal mirror
- Compass
- Hand-held signal flare
- Tourniquet
- Directional-strobe cover
- Whistle
- Battery-powered emergency strobe
- First-aid pack
- Drinking-water container
- Knife with sharpening stone
- Revolver holster
- Blanket
- Survival vest
- Ground-marker panels
- Magnesium block with sparking insert for starting fires
VTOL aircraft

The first VTOL (Vertical Take-Off and Landing) aircraft were helicopters. For fixed-wing aircraft, VTOL became a realistic possibility when the British aero-engine manufacturer Rolls-Royce pioneered the "Flying Bedstead" in 1953. This device consisted simply of a wingless four-legged frame with two jet engines pointing downwards. It made the first ever vertical take-off using jet-power, and eventually led to the development of the British Hawker Siddeley Harrier (later built by British Aerospace). The Harrier was the first VTOL aeroplane with sufficient power and manoeuvrability to carry out the duties for which it was designed. Its single engine is a Rolls-Royce Pegasus turbofan with four nozzles. All four nozzles are vectored (rotated) downwards for VTOL or hovering, and rearwards for high-speed flight. In the USA, a different type of VTOL aeroplane has been pioneered using special tilting rotors. This aircraft – the Bell-Boeing V-22 Osprey – has a jet-turbine-powered “proprotor” on each wingtip. For vertical take-off, hovering, and landing, the proprotors are tilted upwards and act as helicopter rotors; for normal flight, the proprotors are gradually tilted forwards to act as conventional propellers.

SIDE VIEW OF HARRIER GR5

- Birdproof wrap-around windscreen
- Upper "request identification" aerial
- Yaw vane
- "Head-up" data display
- Ejector seat
- Cockpit air-conditioning intake
- Sliding canopy
- Explosive cord for pre-ejection breaking of canopy
- Inflight-refuelling probe (in stowed position)
- Port leading-edge root extension
- Auxiliary power unit air intake
- Front nozzle
- Window of laser- and TV-tracking bombing system
- Pitot head
- Lower "request identification" aerial
- Night formation-flying marker light
- Squadron badge
- Auxiliary air intake
- Nose-gear door
- Retractable/boarding step
- Landing light
- Drop tank (disposable fuel tank)
- Levered-suspension fork
- Forward landing gear
- Engine-bay air cooling scoop
- Intermediate stores pylon
- Hydraulic ground connections
Acknowledgments

Dorling Kindersley would like to thank the following:

Aeromega Helicopters, Stapleford, for the Bell Jet Ranger; Aero Shopping, London, for instruments (p. 54); Avisonic Mobile Services Ltd, Waford, for instruments (p. 55); Roy Barber and John Chapman, RAF Museum, Kenton, for the BE.2E; B.2E, flying helmet, Gyroscope, Hawkett Harrier, Harrow Tempes, le Rhône engine, and Rolls-Royce Reestrel engine; Mitch Barnes Aviation, London, for instruments (pp. 16-17); Mike Beach for the Curtiss-D Pusher; British Caledonian Flight Training Ltd for the Airbus flight deck simulator; Fred Coates, Helitech (Luton) Ltd, for the Bell-47 components; Michael Cuttell and CSE Aviation Ltd, Oxford, for the Bell-47 and Swissair 300; Dowty Aerospace Landing Gear, Gloucester; Guy Hatch of the Airship Association for advice; Anthony Hooley, Grosvenor Welsh, and David Ford, British Aerospace Regional, for the BAE-146 jetliner, safety equipment, and computer-designed SST; Ken Huntley, Mid-West Aero Engines Ltd, for engines (pp. 26-27); Imperial War Museum, Duxford, for Concorde; The London Gliding Club, Dunstable, for the Schleicher K25; Musée des Ballons, Calvados, for the statoscope; Noel Penny Turbine Ltd for the turbojet; Andy Pavey, Aviation Scotland Ltd, for the ARA Super 2; Tony Pavey, Titanium Aircraft Development, London, for the gas cylinder, balloon basket and burner, and navigator’s chair; the Commanding Officer and personnel of RAF St. Athan for the Torro Mission; Project Officer for the Commanding Officer and personnel of RAF Wittering for the Harrier; The Science Museum, London, for the Montgolfier balloon, Schütte-Lanz aircraft, Armstrong Siddeley engine, instruments (p. 16), and propeller (p. 12); Ross Sharp, The Science Museum, Wroughton, for the Lockheed Electra, airfield radar, Handle Page Gugmune, and magnet; The Shuttleworth Collection for the Avro Lynx cockpit, Avro Triplane IV, Avro Tutor, Blackburn monoplane, Bleriot XI, Bristol cockpit, LYG CV1, and Wright Flyer; Skysport Engineering for the Bristol fighter wing; Mike Smith for the survival jacket; Solar Wings Ltd, Marlborough, for the Pegasus Quasar microjet; Julian Temple, Brooklands Museum Trust Ltd, for the Vickers Flying, Vickers Wellington, and Curtiss-D Pusher; Kelvin Wilson, Flying Start, for the Pegasus XI SE microjet.

Special thanks to David Learmount for invaluable editorial advice.

Additional design assistance:
Alexandra Brown, Paul Calver, Clare Sheeden, Bryn Walls, Ellen Woodward

Additional editorial assistance:
Nicholas Jackson, Paul Jackson, Mary Lindsay, Bob Ogden, Louise Tucker

Additional illustration:
Simone End

Additional photography:
Peter Chadwick, Aunty Crawford, Mike Dunning, David Exton, Gary Kevin, Dave King, Dave Rushin

Picture credits:
Come and explore FLIGHT from the inside out! This visual dictionary looks at the inner workings of planes and other flying machines of all kinds, including airships, helicopters, early biplanes, modern jetliners, microlights, and much more. Open these pages and find:

- Over 200 outstanding, original photographs and graphic illustrations.
- Exploded views and cutaway photographs that reveal even the tiniest details of aircraft.
- A fascinating new kind of dictionary that can be used by the entire family.
- Concise text and carefully researched definitions that are user-friendly for people of all ages.
- Instant access to a 5,000 word specialist vocabulary.

EYEWITNESS VISUAL DICTIONARIES

are the ultimate finder’s guides to the naming of the parts. See, learn, discover, and identify all the parts of all the things in the world about you. From the tiniest cogs of machines to the smallest cells of living creatures, the most intricate workings of everything are revealed and labelled in full-colour clarity.

OTHER TITLES IN THIS SERIES:

Everyday Things • Human Body • Ships and Sailing Animals • Plants • Cars • Military Uniforms • Buildings